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The cubic-quintic Schrodinger equation is known to possess solutions that grow unboun- 
dedly in finite time. By exploiting its conservation properties we derive sufficient conditions for 
bounded solutions. The computation of solutions near the critical threshold poses difficulties, 
since the number of active Fourier-components increase dramatically, resulting in steep tem- 
poral and spatial gradients. To overcome this difficuity we propose an efticient pseudospectral 
scheme which adaptively adjust the number of degrees of freedom. % 1990 Academic Press. Inc. 

1. INTRODUCTION 

The cubic Schrodinger equation has attracted much attention from numerical 
analysts during the past couple of years, see, e.g., ~eideman [12] and the referen- 
ces therein. This interest is in the first place due to the important role it has 
in the development of soliton theory over the last twenty years. Newell [5] gnves an 
up to date account of this. 

In addition the equation has also proven to be a useful model problem for 
numerical analysts attempting to devise more efhcient numerical methods for 
solving nonlinear dispersive wave problems in g eral. In particular, it has been 

emonstrated (Herbst et al., [2], Sanz-Serna a Verwer [S ] ) that the equation 
ecomes much harder to solve numerically if t ontribution from the nonlinear 

part increases. This is caused by a spreading of the active wave numbers in Fourier 
space which is related to an increase in the spatial gradients in physical space. 

In this paper we go one step further by increasing the order of the nonlinearity 
from cubic to quint&. It is well known, see, e.g., Glassey [l], that the solution in 
this case may become unbounded in finite time unless the initial con 
suitably restricted. Thyagaraja [ 111 related this to an unlimited spread of t 
modes in Fourier space. His ideas, which are applied to the present situation in 
Section 2.3, enable us to conclude that the number of active modes in Fourier space 
will remain bounded provided a “smallness” condition is satisfied by the initial 
condition. 

Since the number of active Fourier modes remains bounded, a spectral Fourier 
method should be particularly appropriate to solve the equation ~~rne~ca~~y as has 
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been confirmed by several authors, see, e.g., Taha and Ablowitz [9]. This idea is 
exploited in the present paper by allowing the number of modes in our pseudo- 
spectral implementation to vary adaptively. This may result in considerable savings 
in computational cost in situations where the number of active Fourier modes may 
vary considerably during the course of the computation, One such situation occurs 
in the time evolution of the Benjamin-Feir side-band instabilities which will be 
discussed in detail. 

Finally, we would like to comment briefly on the physical significance of the 
equation in the form used in this paper. It may be viewed as a model of the situa- 
tion which arises when a multiple scales expansion of the Euler equations is taken 
to a higher order as the one from which the cubic SchrSdinger equation results, see, 
e.g., Johnson [3], Kakutani and Michihiro [4]. However, we have ignored the 
important contribution from the nonlinear derivatives. 

We have done extensive numerical experiments with the so-called derivative 
Schriidinger equation 

(1.1) 

and an analysis similar to that given in this paper will be reported elsewhere. 

PART I 

2. Theoretical Aspects 

In this first part of the work we outline the main properties of the cubic-quintic 
nonlinear Schrbdinger equation. It will be convenient to express this equation in 
operator form 

u, = i9u + iM( (2.1) 
where 

Lfu := u,, (2.2a) 

and 

Jv-(u):=q,~u~2-tq~~u14. (2.2b) 

We shall assume L-periodic boundary conditions throughout; that is, 

u(x, t) = u(x + L, t), t > 0. (2.3) 

2.1. Conservation Laws 

Only two of the conservation laws satisfied by (2.1) are of relevance to the 
present study. They are 
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where 

where 

z=J /u12dx, 

dJ 
z= 0, (25) 

ere, and henceforth, integration is over one space period unless stated otherwise. 
We refer to (2.4) as the conservation of energy, and to (2.5) as the conservation of 
the second quantity. 

2.2. Linearized Stability Analysis 
Equation (2.1) admits the wave train solution 

u(x, t)=aexpi(kx-ot), (2.6) 

provided the nonlinear dispersion relation 

co=k2-qclaj2-qqlujd (2.7) 

is satisfied. We refer to a, k, and w respectively as the amplitude, wave number, and 

consider the stability of the solution (2.6) which we denote by zdO. This 
on is perturbed to 

u = U,(l + E(X, t)), 

where lIsll2, 4 1 and //ejl, =max,Is(x, t)l. Substitution of (2.8) into (2.1) gives, to 
the first order, the evolution equation for the perturbation 

Et= i& xx -2ke,+i(q,l~l~+2q,la/~)(~+~*] (2.~1 

with E* denoting the complex conjugate of E. 
Assuming that E is L-periodic we express it as the Fourier series 

E(X, t) = f t,(t) exp(&x) 
“= -iu 

(2.10) 

with wave numbers 
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Replacing E by its Fourier expansion in (2.9) we obtain the system of differential 
equations for the coefficients E,(t), 

Q-%s-d 
-Q 

with 

Q :=q,la12+2q41a14. (2.12) 

The eigenvalues of this system are 

(2.13) 

Hence we have exponential growth in IEknl, if the condition 

i.e., 

is satisfied. 

d < 2Q> (2.14a) 

P~<2qcl~12+4q,l~14 (2.14b) 

Obviously the condition (2.14) cannot be satisfied if q, and qq are both negative 
or zero. Otherwise the condition can be met depending on the amplitude of the 
initial solution. The long time evolution of this instability is the focus of our 
investigation. 

In the purely cubic case (q4 = 0), it is well known that the instability cannot grow 
unboundedly [ 11, 11. Inclusion of the quintic term no longer guarantees a bounded 
solution, as was pointed out by Weinstein [13] and Thyagaraja [ll]. We now 
derive some sufficient conditions for boundedness, by using similar arguments as 
the latter reference. 

2.3. Boundedness of the Solution 

To obtain condition for boundedness of the solution our point of departure is the 
conservation laws (2.4) and (2.5). Let I be given by (2.4b), and define 

(2.15) 

If x0 is defined by 

14x0, t)l = minlu(x, t)l, (2.16) 
x 

then we have the identity 

u’(x, t) = u*(x,, t) + 2 lx uu, dx. 
x0 

(2.17) 
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Using Schwartz’s inequality we obtain 

lu(x, t)l’< I(L-’ + 2 

and 

(2.18) 

(2.19) 

Similarly 

i 
\u(x, t)16 dx < 13(L-’ + 2hPy. 

The implication of (2.18) is that if M is bounded, then // ujl 5 is bounded. Accor- 
dingly we investigate the boundedness of A4 by distinguishing between four cases. 

Case I. 4, >O, qq > 0. Inserting the inequalities (2.18)-(2.20) in the secon 
conservation law, (2Sb), yields, after some rearrangement 

1(1-~q,z2)M-I*(q,+~q~P~) 

- [TL-‘~*(&7,+- ;L-“q,I)+J] GO. 

This inequality ensures that M is bounded, provided t 

$qy12< 1. 

Case XI. qc < 0, qq < 0. The bound 

M 6 JJI 

(2.21) 

(2.22 j 

(2.23) 

follows trivially from (2.5b) and (2.15). 

II. q, > 0, qy < 0. Following the same procedure as in Case I we obtain 
an inequality similar to (2.21), but with q, = 0. Hence we have an un~ond~ti~~al~~ 
bounded solution. 

Case IV. qc < 0, qy >O. An inequality similar to (2.2 s derived, but wit 
qc = 0. Accordingly the inequality (2.22) guarantees a boun solution. 

To summarize, when qq d 0 (Cases II and III), a bounded solution for all time is 
guaranteed. If qy > 0 (Cases I and IV) a bounded solution is ensured by the small- 
ness condition (2.22). Note that this condition is sufficient, but not necessary. Our 
numerical experiments will examine the sharpness of the bound (2.22). 
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2.4. Compatibility between Linear Instability and Boundedness 

Let us now investigate the conditions under which we linear instability of 
Section 2.2 remains bounded. The initial condition corresponding to (2.6) and (2.8) 
shows that 

I=~a~2~~1+~J2dx~~a~2L. (2.24) 

Let us now reconsider the Cases I-IV of the previous section. 

Case I. qc > 0, q, > 0, The smallness condition (2.22) and Eq. (2.24) yield a 
maximum value for /a[*, namely, 

(2.25) 

According to (2.14), all modes n which satisfy 

b12>Yn (2.26) 

with 

yn := 
-4, + Jqz + 16q,z2n2LP2 

4q, 
(2.27) 

are linearly unstable. The following situations may be identified: 

0-c la12<y1: no linear instability is possible 

y1 G la12< (b12Lx: a bounded linear instability is possible 

(l4*L,~ Ial’: the linear instability is not necessarily bounded. 

Clearly if laliax < yi then a bounded linear instability cannot be ensured. This will 
be the case if 

p& 42;. =--- (2.28) 

Case II. qc < 0, qq < 0. No linear instability is admitted and the solution 
remains bounded for all time. 

Case III. qc > 0, qq < 0. There is a bounded linear instability in all modes n 
which satisfy (2.14). Hence, necessary conditions for instability are 

lqql < dL*/W~*) (2.29a) 

and 

la12E(K, R,), where R + := (qc rt 44: - 16 lqql ~2/L2)/(4 lqql). (2.29b) 
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aCase IV. q, < 0, q, > 0. Reasoning similar to that leading to (2.28) shows that 
in this case we need simultaneously 

and 
3 1 

/U14<-- 
4 q4L2’ 

his can obviously not be reahsed and a bounded solution cannot be guarantee 

PART IT 

3.1. Introduction 

3. Numerical Aspects 

Before we describe the numerical methods, we introduce the following notation: 
The space interval [ - +L, $L] is descretized by the uniform N-grid 

xj := jh, j= -;N “N, I ..‘, 2 0.1) 

where the grid spacing is given by 

h := L/N. (3.2) 

Let U,(t) denotes the approximate solution to u(xj, I). The discrete Fourier trans- 
form of the discrete function {U,) is defined as 

6;,Ui:= On=;1 U,exp(-@4,x,), n= -SN,...,iN-I (3.31 
.i 

with inverse formula 

where ,uL, is defined by (2.11). Here, and henceforth, summation indices range over 
- $W to $M- 1. N is taken to be an even integer throughout. 

3.2. Space Discretization 

Our numerical method is based on the following ~seudos~ectral space-discretiza- 
tion of (2.1) 

tij= -iF,:‘(pzF,Uj)+Jtr(Uj), (3.5) 

where the “.” denotes differentiation with respect to time, and 

JV(U,) :=i(q,.IU,/2+qylUj14) Uj. (3.6) 



134 CLOOT, HERBST, AND WEIDEMAN 

For the purely cubic case, (~7~ = 0), the properties of the semi-discretization are 
discussed in Weideman [12]. These results are trivially extended to the quantic- 
cubic, and we merely list the relevant features: 

- The discretization (3.5) conserves discrete analogues of both the conserva- 
tion laws (2.4) and (2.5). 

-The scheme (3.5) possesses the exact nonlinear dispersion relation (2.7), as 
well as the linear instability region (2.14) of the low wave numbers. 

-Aliasing contributions are introduced by the scheme (3.5). These may be 
eliminated by either a dealiasing procedure [6, 7, 121 or by selecting N sufficiently 
large [12]. In the present study we shall opt for the latter course, by adapting the 
number of degrees of freedom automatically to ensure that we cover at all times all 
effective modes. 

3.3. Time Integration 

The results of Taha and Ablowitz [9] and Weideman [12] suggest that the most 
efficient time integration scheme for the system of ODES (3.5), is the split-step 
method of Tappert [lo]. This scheme is defined by the following steps: 

1. First a so-called intermediate solution is computed by advancing the 
solution according to the exact solution of the purely nonlinear equation 
U, = Jlr( u), namely, 

Vy = 17% exp(iqwV( Uj)). (3.7a) 

Here z is the time step and UT denotes the approximation to u(xj, mz). 
2. The solution is advanced in Fourier space according to the linear disper- 

sive equation U, = Zpu, namely, 

(3.7c) 

(3.7d) 

We also list the features of the scheme (3.7) 

-The method is first-order accurate in time. 
-The method conserves a discrete analogue of the energy (2.4), but not the 

second quantity (2.5). 
-It possesses a nonlinear dispersion relation identical to (2.7). 
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-The method has the following step-size restrictions for an appro 
linearisation, 

h2 
5<-- 

71 
if q,la12+2qqla14>0 

T h2 
26+7c<n2 

if q,l~l~+2q~/a/~<O, (3.8b) 

where 8 = -arc cos l/ 1 + (qc Ial + 2q, la14)2?. 

- Provided the step-size restrictions (3.8) are satisfied, the second quantity 
(2.5) turns out approximately constant during practical 6om~~tatio~s. 

Since our numerical experiments are aimed at investigating near singular 
behaviour, it is eneflicient to keep the number of degrees of freedom fixe or an 
updating of the grid, we propose the following algorithm: 

To obtain the initial number of degrees of freedom, we c We the FourieK 
transform o,,(O) of the initial condition. Let E be a me-assign okranee. RJ~ N 
is selected such that 

1x1 -=c& (3.9) 

for all y1 such that -iiV<nG -iN+K, $N-K<n<$N, where Kis specifi 
advance. In other words, we require that the energy content of the 2K high 
numbers be sufficiently small. 

Next the solution at the first time level is calculated according to the split-step 
scheme (3.7). If the criterion (3.9) is no longer valid (i.e., energy has flowed to some 
of the 2K high wave numbers) we return to the previous time level (step failed), and 
double the number of degrees of freedom. The function values at ~a~f-i~~e~~~ n 
are inexpensively calculated through discrete trigonometric ~nte~p~latio~~ 
procedure is applied until the criterion (3.9) is valid (step accepted). 

On the other hand, if the criterion (3.9) is valid at the first step, it is check 
whether the number of degrees of freedom can with safety be reduced by a fact 
one-half. This procedure is applied at each time level. 

Of course, the time-step also needs updating to ensure that t e linear instability 
condition (3.8) remains satisfied, For this purpose we let 

h2 
T=u- 

71) z < ~ln,,: 

where r,,, and a < 1 are safety factors to be specified by the user. 
We discuss some features of the above algorithm: 

- Provided K is selected sufficiently large and E is sufficiently small, we have 
very high accuracy in space. Also, the need for dealiasing has been circumvented. 

oreover, the process is automatic. 
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- Provided N is selected to be a power of two initially, it remains so for all 
time. Hence the efficiency of the FFT is exploited to its fullest. 

-Because N is doubled at each step the updating of the grid is inexpensive. 
Moreover, this procedure ensures that updating does not occur too frequently. 
Whenever two successive step failures occur, it is usually an indication that a 
singularity has been reached. 

4. NUMERICAL EXPERIMENTS 

In this section the algorithm described in Section 3.3 is used to solve (2.1) 
numerically. In all the experiments the initial condition 

where 
u(x, 0) = a( 1 + E cos px), 

p = 2TcjL 

was used. The values of L, F, and K are fixed at L = 12, .s = 0.1, and K= 5. We now 
proceed to describe the numerical experiments for different values of qc, qq, and a. 

4.1. Case I. qc>O, q,>O 

We recall from (2.28) that the 

or with L = 12, 

bounded linear instability cannot be guaranteed if 

(4.la) 

qc < 1.76&. (4.lb) 

Since the evolution of the linear instability is under investigation the choice 
q, = 2, qq = 0.25 is appropriate. According to (2.25) and (2.27) the following 
behaviour is expected from different choices of Ial : 

0 < /aI < 0.259~no instability 
0.2596 < /a( < 0.3799-a bounded linear instability 
0.3799 < /al < cc-an unbounded nonlinear instability. 

Figures la and lb show the solution with an initial amplitude of a = 0.35 and the 
solution clearly displays recurrence, see, e.g., Yuen and Ferguson [14]. It may be 
argued that the subsequent development of the instability causes the amplitude to 
exceed the critical value of 0.3799 and, hence, should become unbounded if our 
bounds are sharp. However, it should be borne in mind that the smallness condi- 
tion pertains to the initial condition and the solution preserves its “memory” of this 
condition through the conservation laws. 
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/G< 
ci , I I I 

Cl.00 20.00 40.00 EO.00 80.30 !GC.GO 12o.oc 
time 

FIG. 1. Recurrence obtained from qC = 2, qq = 0.25, and a = 0.35: (a) The solution in physical space. 
(0) The Fourier representation. (c) A comparison between the number of active analytical modes and the 
number of modes included in the numerical scheme. 
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0.00 4.00 8.00 12.00 
time 

16.00 
1 

20.00 
1 

24.00 

c 

8 

=: 

-1 

0.00 4.00 8.00 12.00 16.00 20.00 24.00 
time 

FIG. 2. A bounded instability obtained from q, = 2, q4 = 0.25, and a = 0.6: (a), (b), and (c) as in 
Fig. 1. 
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6.00 2.00 q.00 6.C3 B.CO .0.30 i?~C; 
ti-e 

G.00 2.00 4.00 6.00 8.CO 10.00 12.0: 
time 

FIG. 3. An increasingly 
(c) as in Fig. 1. 

unstable solution obtained from qc = 2, qq = 0.25, and a = 0.645 : (al, (‘oh and 
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Increasing the value of a to 0.6 (Fig. 2) and 0.645 (Fig. 3) shows the increasingly 
unstable behaviour of the solution. Starting with well-defined recurrence, we end up 
with solutions which become unbounded, with Fig. 3 falling on the edge between 
bounded and unbounded solutions. 

The nature of the unstable behaviour may be observed from Figs. lb, 2b, and 3b, 
which show that an increasing number of Fourier modes become activated. 

The behavior of the algorithm is monitored in Figs. lc, 2c, and 3c which show 
the number of Fourier modes included in our computations as well as the number 
of modes for which 1 ir,l > 10P6. 

Although we have not tried for optimal efficiency, the computational cost of the 
adaptive scheme to calculate the solution of Fig. 3 is only about 15% of the cost 
of the fixed mode scheme, which in this case requires 256 modes. 

0.00 5. IO 10.00 15.00 20.00 25.00 30.00 
time 

FIG. 4. Recurrence obtained from qc = 4, qq = -3, and a = 0.35: (a) The solution in physical space. 
(b) The Fourier representation. 
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4.2. case III: q,>o, q,<o 

According to the analysis of Section 2.4 this choice of the parameters leads to a 
bounded linear instability provided (2.2a) is satisfied. Choosing q, = 4 and qq = -3, 
(229a) is satisfied and (2.29b) becomes 

a E (0.190, 0.794). 

Figures 4, 5, and 6 show the solutions with a== 0.35, a = 0.49, and a =0.74, 
respectively. According to (2.14) these correspond to I, 2, and 1 unst 
respectively. The behaviour of these unstable modes is best illustrated 
5b, and 6b. 

4.3. case IV: q,<o, q,>O' 

For this choice of the parameters, a bounded linear instability cannot be guaran- 
teed and indeed, Fig. 7 shows that the solution becomes ~~bo~~de~ in finite time. 

time 

FIG. 5. ,A bounded unstable solution obtained from qc = 4. qq = -3, and n = 0.49: (a) and (b) as in 
Fig. 4. 
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Since the energy or L, norm remains constant the unbounded solution assumes the 
form of a delta function. Figure 7b again shows the number of modes allowed for 
in the computation as well as the actual number of non-zero modes. Accordingly, 
the blowup of the solution is identified with an unlimited growth in the number of 
non-zero Fourier modes. 

The question now arises whether the bounds derived in this paper are sharp. Our 
numerical experiments indicate that the bound (2.14), pertaining to the linearized 
instability, is sharp. This has also been confirmed elsewhere in the case of a cubic 
nonlinearity, see, e.g., Weideman [12]. The situation with regard to the smallness 
condition (2.22) is less clear. 

In Figs. 2 and 3 we have used values well outside the range where a bounded 
solution can be guaranteed and yet Fig. 2 gives no indication of a blowup. Of 
course, it is possible that a blowup may occur at a later time. However, the fact that 

b 

R 

-1 

0.00 5.00 10.00 15.00 20.00 25.00 30.00 
time 

FIG. 6. Recurrence obtained from qc = 4, qq = -3, and a = 0.74: (a) and (b) as in Fig. 4. 
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C.@C s.e3 1.60 2.113 2.29 il. cc 4.80 
time 

FIG. 7. A bounded unstable solution from qC = -1, q4 = 3, and a=0.65: (a) Physical space. 
(b) A comparison between the number of active analytical modes and the number of modes include 3n 
the numerical scheme. 

the smallness condition (2.22) was obtained taking only two conservation laws into 
account as well as the roughness of some of the estimates, in our opinion, ren 
a sharp bound rather unlikely. 

APPENDIX: A SMALLNESS CONDITION FOR 
A FINITE DIFFERENCE SCHEME 

A smallness condition for the pseudospectral scheme follows in exactly thee same 
way as (2.22) was obtained. We present the corresponding analysis for a finite 
difference scheme. 

581/86/l-10 
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Consider the following discrete version of (2.1) and (2.2) 

tJj= iZhUj+ iN(Uj) U,, 

where Uj denotes the time derivative of Vi, 

LgJUi := (Uj,, -2Uj+ Uj-l)/h2 

and 

M(Uj) :=qc1Uj12+qq)Uj14. 

If periodic boundary conditions 

u-n,2 = u,; U-(N+1),2= U(n+1),2 

are used, it may be shown that 

(N-l)/2 
h c lUj12=Z 

j= ~ N/2 

(A.11 

(A.2) 

(A.3) 

(A.4) 

and 

(N- I)/2 
Nh c p;(ti,J’= 

n= -N/2 

;q,h’N2)‘2 ,Uj,4+;hq,h(Xg”2 ,Uj+J (A.5) 
j= -N/2 j= -N/2 

are constants in time. The U,, are given by (3.3). 
Proceeding as in Section 2.3, we define 

N/2 
MZ:=h c 

j= -N/2 

and choose s such that 

Iusl G l"jl for all j. 

After some manipulation, where use is made of the Schwartz inequality, it follows 
that 

hx IUj14<Z2 
.i 

(;+2M1”(l+hM’“+~h2M)1’2) 

and 

hx (Uj16<Z3 
i 

(~+2L1~2(l+hM112+~h2M)1’2)2. 

(‘4.6) 

(A.7) 
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From these expressions a bound for L G, pi / 8,j2 may be derived. Since 

345 

it follows that 

The identity 

yields 

Hence, 

Uj+l-Uj=C ir,eXp(i~,Xj)(eXp(j~~h)-l), 
n 

IM=LC ICTinj2 lexp(i~,h)-l!2/h2. 
n 

q(x) - el;p( y) = (x - y) j’ exp(sx -t- (I- 8) y) & 
0 

l~evG-d+ WI an. 

efming 

Ifi7:=L&.l~/oi,~2, (A.8) 
n 

it follows from (A.5), (A.6), and (A.7) that 

(A. as) 

En the limit h -+ 0, this goes over into (2.21). 
Althoug a complete analysis of (A.lO) will not be attempted here, it is easy to 

show that & will be bounded provided h is small enough. Also the smallness condi- 
tion relating to (2.22) is to O(h), 

$qy12 + ($qJ+ f L-‘q,12)h < 1. (A.11) 

These results show that the solution of the difference scheme will remain bounded 
as h --f 0, provided the initial conditions are suitably restricted. 
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